Transcriptomics analyses reveal global roles of the regulator AveI in Streptomyces avermitilis.
نویسندگان
چکیده
In our previous studies, AveI was identified as a negative regulator for avermectin biosynthesis in Streptomyces avermitilis NRRL8165, and the aveI-null mutant of NRRL8165 could produce at least 10-fold more avermectin B1a than its wild-type strain. In order to explore the regulatory mechanism by which aveI affects avermectin biosynthesis, in this study, we performed a global comparative gene expression analysis between aveI deletion mutant 8165DeltaI and its wild-type strain using NimbleGen microarrays in combination with real-time reverse transcriptase-PCR. The results showed the aveI deletion has caused global changes beyond the avermectin biosynthetic gene cluster. The aveI gene not only negatively affected expression of the avermectin biosynthetic gene cluster but also affected expression of oligomycin and filipin biosynthetic clusters. In addition, the genes involved in precursor biosyntheses for avermectin or other antibiotics, such as crotonyl-CoA reductase and methylmalonyl-CoA decarboxylase, were also upregulated in aveI mutant. Furthermore, genes in several key primary metabolic pathways, such as protein synthesis and fatty acid metabolism, were found downregulated in the mutant. These results suggested that the aveI gene may be functioning as a global regulator involved in directing carbon flux from primary to secondary metabolism.
منابع مشابه
Functional expression of SAV3818, a putative TetR-family transcriptional regulatory gene from Streptomyces avermitilis, stimulates antibiotic production in Streptomyces species.
Avermectin and its analogs are major commercial antiparasitic agents in the fields of animal health, agriculture, and human infections. Previously, comparative transcriptome analysis between the low-producer S. avermitilis ATCC31267 and the high-producer S. avermitilis ATCC31780 using a S. avermitilis whole genome chip revealed that 50 genes were overexpressed at least two-fold higher in S. ave...
متن کاملSAV742, a Novel AraC-Family Regulator from Streptomyces avermitilis, Controls Avermectin Biosynthesis, Cell Growth and Development
Avermectins are useful anthelmintic antibiotics produced by Streptomyces avermitilis. We demonstrated that a novel AraC-family transcriptional regulator in this species, SAV742, is a global regulator that negatively controls avermectin biosynthesis and cell growth, but positively controls morphological differentiation. Deletion of its gene, sav_742, increased avermectin production and dry cell ...
متن کاملThe autoregulator receptor homologue AvaR3 plays a regulatory role in antibiotic production, mycelial aggregation and colony development of Streptomyces avermitilis.
The γ-butyrolactone autoregulator receptor has been shown to control secondary metabolism and/or morphological differentiation across many Streptomyces species. Streptomyces avermitilis produces an important anthelmintic agent (avermectin) and two further polyketide antibiotics, filipin and oligomycin. Genomic analysis of S. avermitilis revealed that this micro-organism has the clustered putati...
متن کاملTwo Adjacent and Similar TetR Family Transcriptional Regulator Genes, SAV577 and SAV576, Co-Regulate Avermectin Production in Streptomyces avermitilis
Streptomyces avermitilis is an important bacterial species used for industrial production of avermectins, a family of broad-spectrum anthelmintic agents. We previously identified the protein SAV576, a TetR family transcriptional regulator (TFR), as a downregulator of avermectin biosynthesis that acts by controlling transcription of its major target gene SAV575 (which encodes cytochrome P450/NAD...
متن کاملCharacterization of a Biflaviolin Synthase CYP158A3 from Streptomyces avermitilis and Its Role in the Biosynthesis of Secondary Metabolites
Streptomyces avermitilis produces clinically useful drugs such as avermectins and oligomycins. Its genome contains approximately 33 cytochrome P450 genes and they seem to play important roles in the biosynthesis of many secondary metabolites. The SAV_7130 gene from S. avermitilis encodes CYP158A3. The amino acid sequence of this enzyme has high similarity with that of CYP158A2, a biflaviolin sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology letters
دوره 298 2 شماره
صفحات -
تاریخ انتشار 2009